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This paper investigates the benefits of passive damping in single-input single-output (SISO) and multi-input
multi-output (MIMOQO) feedback controlled structures. Theoretical formulations are derived verifying improved
stability robustness characteristics for simple controlled structures on phase margin, gain margin, and root locus
properties of a SISO system. Control design techniques for closed-loop bandwidths beyond the first modal
frequency require accurate knowledge of the structural dynamics, particularly at crossover. The use of passive
damping in the structural design allows for a greater margin of error in pole-zero cancellation at crossover, thus
improving the stability robustness. Minimum levels of required passive damping are derived for robust control
of uncertain structures. The derivations are extended to suggest application to MIMO systems. Robustness
improvements are quantified in case studies for an 8th-order SISO example and an 18th-order MIMO example

and compared to the simple derivations.

Introduction

NE important structural parameter that has been largely

neglected in the research literature on control of flexible
structures is passive damping. Only recently have passive
damping techniques received attention in improving the char-
acteristics of controlled structures.’»2*+58%13 One key advan-
tage of increasing the amount of passive damping in a feed-
back controlled structure is the improved stability robustness
characteristics.%1%13 Reference 13 points out that for high
bandwidth control of flexible structures, pole-zero cancella-
tion is necessary. Uncertainty in the modeled dynamics can
cause a pole-zero flip in the open-loop transfer function, lead-
ing to large local phase uncertainty and resulting in an unstable
closed-loop system. The required level of damping to prevent
this result depends on the pole-zero uncertainty and on the
phase margin of the compensated system. Although much re-
search is currently taking place in the area of robust control
design, very little emphasis is placed on how to design struc-
tures so that they are inherently robust under closed-loop con-
trol. Passive damping appears to be the most important ro-
bustness parameter of the structure.

This paper addresses the problem statement, ‘“The control
bandwidth must include many poorly modeled, lightly
damped, closely spaced modes.”” This problem statement is
figuratively depicted in Fig. 1a. The fundamental point made
in the paper is that no linear time invariant compensation
exists that robustly (stability robustness as opposed to perfor-
mance robustness) achieves what is suggested by Fig. 1a unless
a significant amount of passive damping is present. The re-
quired level of passive damping is sketched in Fig. 1b. Argu-
ments are presented that quantify required amounts of passive
damping for stability robustness on simple single-input single-
output (SISO) examples. Design case studies are then used to
test these predictions for SISO and multi-input multi-output
(MIMO) controlied structures.
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Robustness Benefits of Passive Damping

Gain Stabilization Beyond the Bandwidth

The basic idea is that poorly modeled or unmodeled flex-
ible modes beyond the bandwidth must be gain stabilized.
Because the loop gain of a flexible structure is maximized near
each resonance at a value inversely proportional to damping
ratio, the conclusion emerges that an undamped flexible mode
can never be gain stabilized. How much damping ratio is re-
quired to ensure gain stabilization of modes beyond the con-
trol bandwidth depends on the gain rolloff of the loop, the
spectral separation between the modal natural frequency and
the control bandwidth, and the modal participation or residue.
The relation is rather obvious and has been reported else-
where 371213 This requirement leads to the gain stabilization
curve sketched in Fig. 1b.
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Fig. 1a Figurative depiction of problem statement for bandwidth to
include many poorly modeled, lightly damped, closely spaced modes.
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Fig. 1b Required level of passive damping to meet problem specifica-
tion.
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Fig. 2 Departure angles of root locus of a single oscillatory system as
a result of uncertainty in pole location.

Phase Stabilization Within the Bandwidth
Robust Pole-Zero Cancellation

To achieve high bandwidth control of a flexible structure,
the unwanted dynamics within the control bandwidth of the
plant must be compensated, particularly at crossover. Except
in special cases (such as damping with collocated sensor-actua-
tor pairs), this must be accomplished by notch filtering the
control signals at the structure’s natural frequencies, resulting
in cancellation of plant poles by compensator zeros and cancel-
lation of plant zeros with compensator poles. Thus an accurate
model of the structure is needed to determine its poles and
zeros for the design of the compensator. For undamped sys-
tems, uncertainty in these values can result in instability in the
closed-loop system.

Figure 2 shows a simple root locus of the system with poles
below or above a neighboring zero as a result of uncertainty
in modeled plant dynamics. If a phase lag of —90 deg is
assumed due to all other dynamics of the loop, the departure
angle of the root locus is 180 deg for the pole-zero pattern of
Fig. 2a, but 0 deg for the pole-zero pattern of Fig. 2b. The
poles migrate to the zero approximately in semicircles as feed-
back gain is increased. By placing a little damping in the struc-
ture, the plant poles are shifted to the left half plane leading to
a system in which exact pole-zero cancellation need not be
achieved. The degree to which the closed-loop poles migrate to
the right-hand side depends on the pole-zero separation. Be-
cause the poles migrate to the zeros approximately in semicir-
cles, the amount of passive damping to assure stability robust-
ness is given approximately by

_ |02z — wnl

$ 0]

W, + Wy

where w, is the zero natural frequency and w, is the pole natural
frequency. This amount of passive damping assures that the
root locus will not cross the imaginary axis for any gain value.

Phase Properties of Passively Damped SISO Plants

Assume the plant under consideration is modally sparse,
and in the neighborhood of each oscillatory mode is well repre-
sented by the following transfer function

1

G§)=—5—"T"—
(s S+ 20,5 + ol

03

where , is its natural frequency and ¢{ is the passive damping
ratio. For this system, the phase angle 6(w) at any frequency is
given by

2{w,
B(w) = —tan-! wf"i:’z G)
n

It can be shown that at resonance (w, = w), the change in phase
angle with respect to frequency is given by

do - -1

do  to,

O

which says that the phase change at resonance is sharp for low
damping (see Fig. 3). If the uncertainty in the eigenfrequency

is given by 6w = w, — Wacrua, then a first-order approximation
of the uncertainty in phase angle near resonance is given by

80 = —bw/ {w, %

Thus the uncertainty in phase of the plant, given an uncer-
tainty in natural frequency, is inversely proportional to the
damping.

By observing the phase excursion in imperfect pole-zero can-
cellation, the degradation of closed-loop stability can be deter-
mined. Figure 4 shows the phase excursion as a result of the
actual plant natural frequency being less than the modeled
frequency (wacua <wn), Which introduces a local phase lag.
Given an undamped structure with imperfect pole-zero cancel-
lation, the local phase excursion is 180 deg. The introduction
of damping reduces this phase excursion.

For a local phase margin of 60y, which is the amount of
additional phase lag needed to induce instability at that fre-
quency, the permissible amount of uncertainty in the plant
natural frequency is given by

dw < 80py (W, (6)

Thus it is sufficient to say that the amount of damping needed,
given a pole-zero mismatch of éw and a nominal local phase
margin of 60,y, is

1 ébw

80pm Wy

= Q)

This expression leads to the phase stabilization curve sketched
in Fig. 1b.

Simple Structure with Proportional Derivative Control

Hughes and Abdel-Rahman’ and Spanos'? have reported
related studies on classical feedback compensation of flexible
structures with simple models of flexibility. The following ex-
ample examines the benefits of passive damping on a simple
structure with proportional derivative (PD) control. These re-
sults are taken from Spanos.? Stability bounds are determined
based on structural configurations and performance limits.

Consider a structure with one rigid body mode and one
flexible mode at frequency w,. The transfer function repre-
senting the structure is given by

yis) 1 N SinPin an(52+28w,5 +w?)
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Fig. 3 Bode plot illustrating phase change at resonance.
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Fig. 4 Bode plot illustrating phase excursion due to imperfect
(by 10%) pole-zero cancellation for different amounts of passive
damping.
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where y(s) is the measured position of the structure and u(s)
is the control effort applied to the structure. The inertia of the
structure is given by J with a modal damping level of {and a
natural frequency of w,. The term «, represents the modal
participation coefficient of the mode defined as

a, =1+ J¢in¢jn )

where ¢ is the eigenvector (mode shape) of a given mode
normalized to unit mass. The modal participation coefficient
reflects the mass participation in a given mode.

If the mode is minimum phase (o =0) and lightly damped, it
can be shown that

oy = w2/ w? (10)
where w, is the zero frequency, resulting in

Wy — Wy 1

-1 11

A

Wy

Separation between poles and zeros is thus inversely propor-
tional to the mass participation in the mode defined by «,,. A
weakly participating mode (o, = 1) leads to near cancellation
of the plant pole-zero pair.

Under PD control, for a given closed-loop bandwidth wq
and {, as well as a structural natural frequency w, and modal
damping {, Spanos'? reports conditions on the modal par-
ticipation coefficient ¢, to maintain stability. These stability
boundaries are replotted in Fig. 5 given a desired closed-loop
damping ratio of {=1/V2.

By using the algebraic results of reference,'? which are rep-
resented in Fig. 5, and applying Eq. (11), a relationship can be
established between the maximum allowable plant pole-zero
separation and minimum modal damping for stable control of
arbitrary bandwidth as shown in Fig. 6. The figure shows an
inverse linear proportionality between modal damping needed
to stabilize a controlled structure and pole-zero separation. In
comparison with the semicircle assumption and the phase mar-
gin assumption of Eq. (6), the results may differ by as much as
a factor of two.

Directional Properties of Passively Damped MIMO Plants

Small changes in plant variables can result in dramatic dif-
ferences in the directional properties of a lightly damped plant.
The addition of passive damping to a MIMO plant reduces the
sensitivity of direction to plant variable changes. Consider an

, worst case frequency ratio
1 {req'd plotted in Figure 6
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Fig. 5 Stability bounds of a single mode structure with passive damp-
ing control for various levels of modal damping given a desired closed-
loop damping ratio of ¢=0.7071.12
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Fig. 6 Maximum allowable plant pole-zero separation to maintain
stability.

n-degree-of-freedom structural model with the transfer func-
tion from input u; to output x; as follows:

xj(S) - Z": DjrPri

H;(s)=
Gi() ui(s) /=1 82+ 28w,8 +o?

(12)
Notice that the poles of the plant are given by the denominator
of the transfer functions, which are the same for all input to
output relationships. Directional changes are based on the
numerator of the transfer function, which also defines the
plant zero locations. Thus uncertainty in the plant scalar zeros
indicates uncertainty in the plant directions.

For a two-input two-output system, one such indicator of
plant directions is the ratio of the ouptut states given a speci-
fied input. Consider a two-degree-of-freedom system. The ra-
tio of the output states given only the input u,(s) is

x1(8) @83+ 25w;s +wl))
X2(8) @S+ 2¢wns + k)

a; = ¢udn + ¢r2dn

(13)

a; = P11 + P02 (14)

where w,, and w,; are zero frequencies of H;;(s) and Hy(s),
respectively. The phase difference between the two outputs at
a given frequency w is then

t9(w)=tan*’2—25-@Lw2 —tan“zzg—&(ﬂ2 (15)
Wy — @ Wyp— W
The frequency where rapid phase change occurs is at the loca-
tion of the plant scalar zeros (w=w; and w=uw,;). For small
damping values, the phase gradient (d8/dw) at the zero fre-
quencies is approximately

w| _ 1 ol 1

dw wz1 g‘wzl

(16)

dw @z g-wzz

If the uncertainty in the zero location is given by dw,
= ;] — Wy1,acmal» then a first-order approximation of the un-
certainty in phase difference between the two outputs is given
by the following:

80 = dwy/ fw 17

This equation is similar to that derived for the phase uncer-
tainy of a SISO system [see Eq. (5)]. The uncertainty in the
phase difference between the outputs of the plant (the plant
directions) at the plant zero locations is inversely proportional
to damping. Similar equations can be derived for output ratios
as a result of inputs into the second channel and for ratios of
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Fig. 7 Four-disk system (based on Ref. 11).
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Fig. 8 Pole-zero plot of nominal and extreme uncertainty cases.

inputs while measuring only one output. This idea can be
extended for higher-order MIMO systems, but the implication
of uncertainty in these directions on control system robustness
is not easy to quantify.

SISO Four-Disk Example

This example problem investigates the virtues of passive
damping on a structure consisting of four disks connected by
flexible springs as shown in Fig. 7. It uses a system originally
proposed by Rosenthal.!* The objective is to control the angu-
lar position of one of the disks by applying a force on another
disk given some uncertainty in the inertia in the top disks. The
structure is modeled as a fourth-order system consisting of
four lumped masses and three springs.

The actuator is placed such that it is at the nominal node of
the second flexible mode. This results in a pole-zero cancella-
tion in the nominal plant model making the second flexible
mode uncontrollable. The uncertainty in the plant model re-
sults in a pole-zero flip as shown in Fig. 8, which makes it
difficult to control near that frequency. The uncertainty in the
disk inertia is given by 0.25<e <0.5. A nominal value of
e =0.375 is used to compute the controller.

Improvements in stability robustness and performance ro-
bustness are investigated for various amounts of modal damp-
ing added to this system with H, control design. The system
framework used to derive the controller is shown in Fig. 9.
Two control designs are computed such that good command
following of the fourth disk is achieved by applying an appro-
priate torque on the second disk. The first control design
uses a low bandwidth controller (w,=0.08 rad/s) such that
the bandwidth is one decade below the first structural natural
frequency. The flexible modes are gain stabilized requiring
small amounts of passive damping. The second control de-
sign uses a high bandwidth controller (wc=1.2rad/s) that
encompasses the first structural mode and lies close to the
sec-ond mode. Thus an accurate plant model is needed. This
example shows the need for passive damping in a phase stabi-
lized system.

The allowable uncertainty in the inertia of the first disk (e)
to maintain stability for various levels of modal damping is
shown in Fig. 10. Because the low bandwidth control system
used gain stabilization of the flexible modes, it was more ro-
bust than the system with the high bandwidth controller. The

high bandwidth case needed significant damping to assure sta-
bility robustness. The results of the four-disk case study
‘'showed excellent correlation from the results predicted in the
preceding section.

Comparison of Figs. 10 and 11 shows similarity in the ef-
fects of increased passive damping on stability and perfor-
mance robustness. In this example, performance robustness
was (arbitrarily) based on the allowable uncertainty in e such
that the H, norm of the system did not vary by more than 5%.
To maintain 5% performance robustness, more damping was
needed than for stability robustness. Major gains in perfor-
mance robustness were achieved with the addition of passive
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Fig. 9 Block diagram of closed-loop system.
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Fig. 10 Plant pole-zero mismatch and allowable uncertainty in iner-
tia of first disk to maintain stability of system for various amounts of
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Fig. 13 Allowable uncertainty in inertia of first disk to maintain
stability of nominal system for various amounts of passive damping.
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Fig. 14 Allowable uncertainty in inertia of first disk to maintain
good performance of nominal system for various amounts of passive
damping.

damping. The low bandwidth design again was less sensitive to
uncertainties than high bandwidth design.

MIMO Nine-Disk Example

MIMO control méthods such as H, control take advantage
of the directionality of the system dynamics. Thus robustness
with respect to uncertain plant directions becomes important
in the control of MIMO flexible structures. In this example,
passive damping effects are examined on a MIMO structure
made up of a nine-disk system connected by flexible springs
with two actuators and two sensors as shown in Fig. 12. The
actuators are located on the fourth and sixth disks, whereas the
sensors are on the second and eighth disks. The structure has
nine modes. The sensors are located at the nominal nodes of

CONTROL OF FLEXIBLE STRUCTURES

the fourth mode (w, = 1 rad/s) making it unobservable, hence
active control at the frequency of the fourth mode is impossi-
ble. That is, a transmission zero lies at the frequency of the
fourth mode resulting in a plant pole-zero cancellation. Any
uncertainty in the model can result in a pole-zero flip which
may cause instability.

As with the preceding example, this investigation examines
the virtues of passive damping on the nine-disk system with
MIMO control for active vibration suppression with H, con-
trol design. The same framework as the preceding example was
used to derive the H, controller with the following weights:

Wy=1
W,=1x10"¢J
W,=1x10"¢I

W - 1 & 0
r 0.01xIl{0 &

As with the preceding example, the stability and perfor-
mance robustness properties of the system are investigated
given an uncertainty in the inertia of the first disk. Because of
the higher complexity and pole-zero cancellation in the system,
the control system is very sensitive to changes in the undamped
structure. Again, good performance is based on the H, norm
not deviating by + 5% from the nominal value given an uncer-
tainty in the inertia of the first disk.

Results of this investigation using MIMO control on the
nine-disk system were similar to that of the four-disk system.
Again, improvements in stability and performance robustness
were achieved through passive damping. The undamped
MIMO nine-disk system was very sensitive to model uncer-
tainty as shown in Figs. 13 and 14. The undamped case could
not tolerate any uncertainty. But for both stability and per-
formance robustness, as much as a 6% uncertainty was tolera-
ble in the inertia of the first disk given 10% modal damping.
With just 1% modal damping, a 3.5% uncertainty in the iner-
tia was tolerable.

Conclusion

This paper has argued simply, but quantitatively, that a
critical level of passive damping can be specified that will
permit robust noncollocated linear time invariant control of
structural dynamics with the control bandwidth encompassing
many flexible eigenfrequencies. This level of required passive
damping is proportional to model uncertainty and is greatest at
crossover. Figure 1 perhaps summarizes the thesis of this paper
most succinctly.

The results from the design studies show much similarity to
those predicted theoretically. The correspondence with the
simple argument was best for the SISO case study. The MIMO
case study suggested that the MIMO problem is even more
sensitive than the SISO problem, and that even more passive
damping is required to ensure robust MIMO control of uncer-
tain structural dynamics with noncollocated sensor-actuator
sets. The results reported in the case studies were derived us-
ing standard H, control synthesis techniques, ignoring plant
uncertainty.

It is instructive to compare typical levels of passive damping
in aerospace structures (approximately 1% of critical) to typi-
cal levels of uncertainty in modal eigenfrequency and zero
locations (several percent). The conclusion that emerges is that
robustness control of structural dynamics will not be possible
without strong augmentation of passive damping levels.
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